Telegram Group & Telegram Channel
Factor analysis, in which both latent (unobserved) and manifest (observed) variables are continuous, is perhaps the best known.

In latent profile analysis the latent variable (e.g. consumer segments) is categorical and the manifest variables (e.g. responses to rating scales) are continuous.

Latent trait models (e.g. item response theory) are characterized by continuous latent variables and categorical manifest variables (e.g. correct or incorrect answers to test items).

In latent class analysis both latent and observed variables are categorical.

There are also hybrid models which include both continuous and categorical latent and manifest variables.

In some models there is a distinction between dependent and independent variables. Censored, truncated and count variables can also be accommodated.

Any of these models can be multilevel (hierarchical) or longitudinal and can incorporate exogenous variables (covariates).

This popular book is focused on latent class analysis and its longitudinal extension, latent transition analysis. It is well written and covers theoretical and technical issues as well as application.

https://www.google.com/search?kgmid=/g/12bmhby6b&hl=en-JP&kgs=a09137cca2d41ecf&q=Latent+Class+and+Latent+Transition+Analysis:+With+Applications+in+the+Social,+Behavioral,+and+Health+Sciences&shndl=0&source=sh/x/kp/osrp&entrypoint=sh/x/kp/osrp

❇️ @AI_Python_EN



tg-me.com/ai_python_en/2216
Create:
Last Update:

Factor analysis, in which both latent (unobserved) and manifest (observed) variables are continuous, is perhaps the best known.

In latent profile analysis the latent variable (e.g. consumer segments) is categorical and the manifest variables (e.g. responses to rating scales) are continuous.

Latent trait models (e.g. item response theory) are characterized by continuous latent variables and categorical manifest variables (e.g. correct or incorrect answers to test items).

In latent class analysis both latent and observed variables are categorical.

There are also hybrid models which include both continuous and categorical latent and manifest variables.

In some models there is a distinction between dependent and independent variables. Censored, truncated and count variables can also be accommodated.

Any of these models can be multilevel (hierarchical) or longitudinal and can incorporate exogenous variables (covariates).

This popular book is focused on latent class analysis and its longitudinal extension, latent transition analysis. It is well written and covers theoretical and technical issues as well as application.

https://www.google.com/search?kgmid=/g/12bmhby6b&hl=en-JP&kgs=a09137cca2d41ecf&q=Latent+Class+and+Latent+Transition+Analysis:+With+Applications+in+the+Social,+Behavioral,+and+Health+Sciences&shndl=0&source=sh/x/kp/osrp&entrypoint=sh/x/kp/osrp

❇️ @AI_Python_EN

BY AI, Python, Cognitive Neuroscience


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ai_python_en/2216

View MORE
Open in Telegram


AI Python Cognitive Neuroscience Telegram | DID YOU KNOW?

Date: |

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

AI Python Cognitive Neuroscience from tw


Telegram AI, Python, Cognitive Neuroscience
FROM USA